Tensorflow for beginner
    • PDF

    Tensorflow for beginner

    • PDF

    기사 요약

    더 많은 예제와 자세한 안내는 TensorFlow 튜토리얼 을 참고해 주십시오.

    먼저 프로그램에 텐서플로 라이브러리를 임포트합니다:

    import tensorflow as tf
    

    MNIST 데이터셋 을 로드하여 준비합니다. 샘플 값을 정수에서 부동 소수로 변환합니다.

    mnist = tf.keras.datasets.mnist
    
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    

    층을 차례대로 쌓아 tf.keras.Sequential 모델을 만듭니다. 훈련에 사용할 옵티마이저(optimizer)와 손실 함수를 선택합니다:

    model = tf.keras.models.Sequential([
      tf.keras.layers.Flatten(input_shape=(28, 28)),
      tf.keras.layers.Dense(128, activation='relu'),
      tf.keras.layers.Dropout(0.2),
      tf.keras.layers.Dense(10, activation='softmax')
    ])
    
    model.compile(optimizer='adam',
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy'])
    

    모델을 훈련하고 평가합니다:

    model.fit(x_train, y_train, epochs=5)
    
    model.evaluate(x_test,  y_test, verbose=2)
    
    '''
    Train on 60000 samples
    Epoch 1/5
    WARNING:tensorflow:Entity <function Function._initialize_uninitialized_variables.<locals>.initialize_variables at 0x7f2d11707048> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'
    WARNING: Entity <function Function._initialize_uninitialized_variables.<locals>.initialize_variables at 0x7f2d11707048> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output. Cause: module 'gast' has no attribute 'Num'
    60000/60000 [==============================] - 4s 68us/sample - loss: 0.2941 - accuracy: 0.9140
    Epoch 2/5
    60000/60000 [==============================] - 4s 62us/sample - loss: 0.1396 - accuracy: 0.9587
    Epoch 3/5
    60000/60000 [==============================] - 4s 62us/sample - loss: 0.1046 - accuracy: 0.9680
    Epoch 4/5
    60000/60000 [==============================] - 4s 62us/sample - loss: 0.0859 - accuracy: 0.9742
    Epoch 5/5
    60000/60000 [==============================] - 4s 62us/sample - loss: 0.0724 - accuracy: 0.9771
    10000/1 - 0s - loss: 0.0345 - accuracy: 0.9788
    [0.06729823819857557, 0.9788]
    '''
    

    훈련된 이미지 분류기는 이 데이터셋에서 약 98%의 정확도를 달성합니다. 더 자세한 내용은 TensorFlow 튜토리얼 을 참고해 주십시오.


    이 문서가 도움이 되었습니까?

    Changing your password will log you out immediately. Use the new password to log back in.
    First name must have atleast 2 characters. Numbers and special characters are not allowed.
    Last name must have atleast 1 characters. Numbers and special characters are not allowed.
    Enter a valid email
    Enter a valid password
    Your profile has been successfully updated.